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1.1 Schematic representation of two different categories of media. (Images
not to scale) (a) Illustrate a medium where the constituents are distributed
over the space having no periodicity. (b) Illustrate a medium where the con-
stituents are distributed over the space in periodic manner. . . . . . . . . . . . 1

1.2 In this graphic, representations of how light propagates across various
media are shown. (Image not to scale) (a) Demonstrate the nature of
light propagation through a periodic lattice where all the scattered rays have
same directionality. (b) Demonstrate the nature of light propagation through
a random media where the light beam coming out from the medium have no
directionality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Schematic representation of a coupled wave-guide lattice. Here the two
different color denote two different materials. The material shown by brown
color denotes the low-refractive index material whereas the material shown by
blue color denotes the high-refractive index material. Here, nh and nl denote
the spatial width of the high-index and low-index layers respectively. . . . . . . 4

1.4 Schematic representation of a periodic lattice and the typical disper-
sion relation of a periodic lattice denoting the band-gaps is demon-
strated in this figure. (a) The dispersion relation of a typical periodic lattice
is depicted by the plot with blue dots, which is the relation between the normal-
ized frequency (ωa/2πc) of the incident wave and the wavevector (ka/2π). Only
the frequencies denoted by the blue dots are allowed to pass through the periodic
lattice. (b) The illustration demonstrating the nature of wave transmission and
reflection through a periodic lattice for an incident light beam. . . . . . . . . . 5

1.5 The dynamics of light propagation through a perfectly periodic lattice
is demonstrated by this figure. (Image not to scale) (a) Schematic of
a perfectly periodic lattice is depicted by this plot where the arrow indicates
the location and direction of the incident beam of light. (b) The propagation
dynamics of light beam through a periodic lattice is demonstrated by this plot.
Due to periodic nature of the lattice Bloch modes are formed, as a result, width
of the input light beam continuously goes on increasing. . . . . . . . . . . . . . 6

xvii



1.6 This figure depicts the schematic representation of a disordered lattice
and the dynamics of light propagation through it. (Image not to scale)
(a) A coupled wave-guide lattice under the application of transverse refractive
index disorder is depicted, where the different colors correspond to different
materials. It should be noted that all the alternate layers denoting high-index
material have bluish shade whereas the rest have brownish shade. Here the
variation of base color is utilized to represent the notion that the refractive index
of the material is not same across the transverse cross-section of the lattice which
is the effect of refractive index disorder. The arrow depicts the direction and
location of the incident beam of light. (b) The dynamics of light propagation
through the disordered lattice is represented by this plot where the transition
from Bloch mode to transverse localized mode is depicted. . . . . . . . . . . . . 8

1.7 Schematic of a coupled wave-guide lattice is demonstrated where the
variation of high refractive index material is varied sinusoidally along
the length of the lattice. (Image not to scale) . . . . . . . . . . . . . . . 9

1.8 Schematic of a smoothly varying platform is demonstrated here, which
can be generated by applying sinusoidal refractive index variation
along the length of a coupled wave-guide lattice along with sinusoidal
variation along the transverse cross-section of the lattice. (Image not
to scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.9 The propagation dynamics of light beam through coupled wave-guide
lattice in presence of complex-coupling is demonstrated in this figure
along with the transverse intensity profile at the end of the lattice.
(Image not to scale) (a.1) Depicts the super-diffusive dynamics of light as
it propagates through the lattice under the application of gain to the substrate
and a.2 depicts the transverse intensity profile at the end of the lattice. b.1
Depicts the sub-diffusive dynamics of light as it propagates through the lattice
under the application of gain to the wave-guides and b.2 depicts the transverse
intensity profile at the end of the lattice. . . . . . . . . . . . . . . . . . . . . . . 14

1.10 The propagation dynamics of light beam through coupled wave-guide
lattice in presence of complex-coupling is demonstrated in this figure
along with the transverse intensity profile at the end of the lattice.
(Image not to scale) (a.1) Depicts the sub-diffusive dynamics of light as it
propagates through the lattice under the application of loss to the substrate and
a.2 depicts the transverse intensity profile at the end of the lattice. b.1 Depicts
the super-diffusive dynamics of light as it propagates through the lattice under
the application of loss to the wave-guides and b.2 depicts the transverse intensity
profile at the end of the lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.11 Pictorial illustration of a smoothly varying medium is demonstrated
in this figure where study of branched flow is possible, if the length
scale of refractive index variation is considered to be much larger
than the wavelength of the wave traversing through it. Here the
areas having different colors denote regions having different refractive
indices. (Image not to scale) . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.12 Pictorial representation of kick-drift model where the transformation
of trajectories after a single kick and drift effect is demonstrated.
(Image not to scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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1.13 The transition of a topologically trivial system to topologically non-
trivial system is demonstrated here. The transition is assisted by flip of
eigen-states. The phenomenon of flip of eigen-states can be observed from the
two eigen-states denoted by the red and blue dots residing on the two bands.
It can be noticed from the plots on either sides of Dirac point that the eigen-
states switch from upper band to lower band and vice-versa after transition
through the Dirac point. During traversing from a topologically trivial lattice
to a topologically non-trivial lattice, the system traverse through Dirac point
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2.1 Schematics demonstrating the trajectory of particles under (a) Brow-
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2.2 Non-Hermitian one-dimensional photonic lattice: (a) Schematic of the
proposed 1D wave-guide lattice having length L = 10mm and transverse width
W = 2.1mm, through which light beam propagates along z direction. The light
beam is launched at the central region denoted by the arrow. (b) Transverse
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2.6 Probability density function: (a) & (b) denote ensemble averaged light
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denote the corresponding plots for a 20 mm counterpart. In (b) & (d) the
dotted black line represents the α-stable fit, the solid lines represent the inverse-
law function fit and the blue circles denotes the scattered data points for intensity. 32

2.7 Direct comparison of PDFs to establish Lévy formation: (a), (b) & (c)
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3.1 Disordered photonic lattice to host the branching of light. (a) Depicts
the pictorial representation of the disordered photonic lattice where x repre-
sents the transverse width, y represents the direction of light propagation and
z represents the variation in refractive index. The backbone lattice is periodic
in nature having 30% disorder in transverse spatial dimension and 20% disorder
in transverse refractive index, additionally this transverse profile of the lattice
varies along the length of the lattice. The arrow indicates the direction as well
as approximate location of the input light beam. (b) and (c) represent the
schematic of the random variation of refractive index and the correlation length
over a 200µm long lattice respectively. . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Branch formation: The quantitative analysis of light propagation through
the disordered photonic lattice is demonstrated here. (a) Represents the
formation of the branches of light through a disordered lattice of 200µm for a
light beam of wavelength 590nm. The plots (b), (c), (d) and (e) represent the
histogram plots indicating the probability distribution (PD) of the intensities
across the transverse width of the lattice at distances 80µm, 120µm, 160µm
and 200µm respectively along the length of the lattice. The plots (f) and (g)
denote the ensemble averaged variance and the stability parameter ”α” of the
transverse intensity distribution along the length of the lattice over 20 realiza-
tions. The variance is calculated at an interval of 4µm along the length of the
lattice, whereas the stability parameter α is calculated at five different distances
along the length of the lattice. (h) Represents the ensemble averaged plot for
normalized scintillation index along the length of the lattice over 20 realizations. 42

3.3 The role of gain to achieve heavy-tailed distribution and retaining the
same is demonstrated by this figure by comparing the light propa-
gation dynamics through various disordered lattices having different
amounts of gain introduced to their bulk. The plots (a), (b), (c) and (d)
demonstrate pictorial representations of the light propagation dynamics through
the disordered lattice in presence of 1e-3, 3e-3, 5e-3 and 7e-3 gain applied to the
bulk respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 The quantitative analysis of the branched flow is done by comparing
the histogram plots depicted by four different columns, where the
rows correspond to different lengths along the lattice. (a), (b), (c) and
(d) denotes the histogram plots corresponding to the light dynamics through
the disordered lattice in presence of 1e-3, 3e-3, 5e-3 and 7e-3 gain applied to
the bulk respectively. The histogram indicating the probability distribution of
the transverse intensity distribution at 40µm, 80µm, 120µm, 160µm and 200µm
along the length of the lattice is shown by rows (I), (II), (III), (IV) and (V)
respectively, where the column corresponds to different gain values. . . . . . . . 45

3.5 The quantitative analysis of the branched flow is done by comparing
the variance and stability parameter α along the length of the lattice.
The variance of the transverse intensity profiles of the propagating light beam
along the length of the disordered lattices having different gains are shown in
(a), which increases to an enormous value with distance establishing the Lévy
distribution. Further, the rate of increase also varies strikingly establishing the
role of gain. Moreover, the stability parameter ”α” is shown by (b) at various
distances viz. 40µm, 80µm, 120µm, 160µm and 200µm along the length of the
disordered lattices having different values of gain applied to the bulk. . . . . . . 45
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3.6 Different realizations illustrating the formation of branches through
the disordered lattice in presence of a gain of 0.01 is shown by this
figure. (a) Demonstrates the branching of a Gaussian beam having beam width
of 5µm. (b) Demonstrates the branching of a Gaussian beam having beam width
of 10µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Spectra of an ideal two level system having zero onsite energy is de-
noted by this figure. The plots correspond to various conditions of different
off-diagonal couplings. The plots in the upper panel are for the exact value of the
coupling parameter, whereas the plots in the lower panel are for opposite values
of coupling parameters. The effect of different phase differences θ between the
inter-layer coupling parameter y is denoted by the three columns of this figure.
Plots (a) and (d) depict the condition for a phase difference −π/4, whereas (c)
and (f) depict the condition for +π/4 phase difference. The condition for zero
phase difference is depicted by (b) and (e). The plots (b) and (e) carries the
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the solid red curve corresponds to [0.7µm, 7.0µm] lattice and blue dashed curve
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4.6 The figure demonstrates the light dynamics as well as the photonic
band-structure for the topologically trivial sub-lattice. (a) Represents
the schematic diagram of the designed trivial lattice where the high-index layers
are depicted by bluish color, and the reddish color depicts the low-index bulk
along-with an arrow indicating the direction of incident Gaussian beam. (b)
Illustrates the refractive-index variation of the sub-lattice having bi-layer dimen-
sion as 6.0µm of higher refractive-index material and 7.0µm of lower refractive-
index material. (c) Represents the obtained photonic band-structure for the
topologically trivial lattice. (d) Plot of the input Gaussian beam denoted by
dotted black curve and the corresponding evolved waveform at the output of
the 20mm lattice denoted by the solid blue curve. (e) Depicts the evolution of
the input Gaussian beam with propagation distance. It can be seen that light
spreads out in transverse direction forming Bloch modes as it propagate through
the lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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index bulk along-with an arrow indicating the direction of incident Gaussian
beam. (b) Illustrates the refractive-index variation of the sub-lattice having bi-
layer dimension as 0.6µm of higher refractive-index material and 7.0µm of lower
refractive-index material. (c) Represents the obtained photonic band-structure
for the periodic lattice of non-trivial topology. (d) Plot of the input Gaussian
beam denoted by dotted black curve and the corresponding evolved waveform
at the output of the 20mm lattice denoted by the solid blue curve. (e) Depicts
the evolution of the input Gaussian beam along the length of the lattice. It can
be seen that light spreads out in transverse direction as it propagates through
the lattice, unlike Fig. 4.6(e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8 This figure demonstrates the light dynamics of the specialty topolog-
ical lattice. (a) Represents the schematic diagram of the designed specialty
topological lattice where the high-index layers are depicted by bluish color, and
the reddish color depicts the low-index bulk along-with an arrow indicating the
location and direction of incident Gaussian beam. (b) Depicts the variation
of the refractive index profile corresponding to the specialty topological lattice
around the interface of the trivial (7.0µm, 6.0µm) and the non-trivial (7.0µm,
0.6µm) sub-lattices each having 75 bi-layers. (c) The comparative plot of the
Gaussian beam at the input of the lattice shown in the blue dotted curve and the
corresponding intensity profile of the output beam at the end of 20mm lattice is
shown by the solid red curve. Two different illustrations of the wave-forms are
depicted by (d) and (e) which describes the evolution of the light beam through
the lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.9 (a) The wavelength range over which the specialty lattice exhibits the topologi-
cally protected light dynamics is shown by this plot. (b) Comparison of the prop-
agation dynamics of the input Gaussian beam (shown by black dashed curve)
has been demonstrated where the red dash-dotted plots depict the propagation
dynamics within the band-gap at 1.125 µm and solid blue plots demonstrate the
propagation dynamics in the pass-band at 2 µm. . . . . . . . . . . . . . . . . . 61
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4.10 The figure depicts robust light propagation through the specialty pho-
tonic lattice. The schematic representation of the specialty topological lattice
due to lateral dislocation is shown in (a). The considered lattice is 20mm long
and numerically sliced into 20 pieces of 1mm each. Dislocation by the lateral
shift of one bi-layer is introduced after 5mm. (b) Depicts the pictorial repre-
sentation of the evolution of the Gaussian beam through the laterally dislocated
specialty topological lattice. Deliberate lateral dislocation has been introduced
to the lattice to establish the robustness of the propagating topological interface-
state. It can be observed that despite lateral dislocation, the light propagates
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5.1 (a) Schematic of a periodic photonic lattice having refractive indices nHigh and
nLow of width dH and dL respectively is presented. Variation of refractive index
across the transverse direction of the trivial and non-trivial lattices are depicted
by (b) and (c) respectively. The band structure over the approximate wave-
lengths ranging from 0.6 µm to 2.5 µm for the trivial and the non-trivial lattices
are shown by plots (d) and (e) respectively where Λ depicts the lattice constant
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of the non-trivial lattice changes between 0 and π as shown in (e) but the Zak
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5.5 This figure represents the effect on light propagation through the
specialty topological lattice in presence of deliberate refractive index
disorder. The distribution of light intensity at the end of a 10mm long specialty
topological lattice in presence of refractive index disorder of different strengths
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